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Abstrect

probl comnected with the heating of rocket:parts the flowing
r— mxuwnnmmr.m-,m”

of high explosive earried by the rockets. Application
1/2 in. gocket indioatos that the trap wires reach an
thnlOOOCInﬂnhtiutomu sections that the wmll

& temperature of about 350 C a fruotion of a second after
the charge is fired, which temperature is high encugh to cause TNT to detomate; and
that a thin layer of insulating material on the outside of the burster tudbe is ade-

quate to keep its temperature below a safe limit. A supplementary solution for use
with small § is given,

1, INTRODUCTION

In several respects it is important <o be adble to estimate the transfer of heat from the
propellant gases to the oonfining wmalls of rockets, Any ocemplete systam of internal ballistics
must depend on such as estimate, The heating of trap wires imposes a restriction on design of
traps. Ia the 4-1/2 lm, rocket with burster tube, which is the prinsipal device discussed ia
ocmmection with the presemt theoretical treatmemt, particular interest attaches to the effect of
the heating cm the high explosive in the burster tube,

The treatmamt of the physical prodlmm will follow the pattern cutlined dy Hirschfelder,
Garten and Hougemes & Ia selving the equations, however, the powerful operaticmal caloulus of
Heaviside and the method of laplass trunsforms will be useds The accurecy of the results thus
obtained is linited by ocur assumptions ocnoerning the physical properties of steel and INT, but
1t 1s delieved that emough informatiom is odtained to help in certain prodlems of design, parti-
oularly of the burster tube in the 4-1/2 in, rockets,

It is assumed throughout that the density of gas flow and the temperature of the gas are om-
stant duriag the burning, Astually, both the decrease in pressure and inerease in the ares of the
channel as the gas flows through the latter tend to make the demsity of flow less towmard the end
of the bumaisg interval, In view of the fact that the heat-transfer cceffioiemt h will be ehosen
to £it an experimental result, the principal effect of this errcmecus asswmption ocmeerning oon-
stanoy of flow density and temperature is to distort the distribution of temperature, but prodadly
ot to intreduce large errors inm the calculated values of total heat transferred. Changes in the
volme thermal oapacity and thermal oonduotivity with temperature are neglected, despits the fact
that the thermal conductivity of steel first inoreases above room temperature and thea deereases

Jo 0o Hirschfelder, W, Gartem, Jre, and O, Hougen, Heat oondueti 8 flow, and heat
trans¥or in guns, NIRC Report A-87 (OSED 86f) et L me o

ole




as the terperature is rcised further, The time-rate of transfer of heat across unit area of
interfzce betwreen the pae arnd the metal is assumed to be given by the expression,

w/at = Klpv) °8 (2 - ), nm &

in wtich P i3 the density of the gas, Y is its average velocity, and '1‘° and T1 are the tem-
porature of gus und surface, respectively. .henp, Y, and t are in cgs units, g is in calories
zer square centireter, &nd the temperature ditre;onco iz in degrees centigrade, K has the nu-
nerical value 0,0083 for smooth surfaces, and is somewvhat larger for rough surfaces. In terms
of the heat-transfer coefficient b, Zg. (I) becomes aQ/dt = h('l‘o - 1).

It should be stated at the outset that thero it g priori a larce uncertainty about the
value of the heut-transfer coefficient h approrriate to the surfaces in question. Iowever, since
Ce e Boyd, of the Jet Fropulsion Laboratory, Indian llead, iaryland, hac measured the riaxirum tem~
perature reached irside the :zall of the burster tube of the 4 -in, rocket after the burning of a
norzil charge, the heat=traunifer coefficient can be estirated, cnd the related quantities deduced
in turn,

Three problems are considered: first, the distridbution of terperature in walle bounded by
parallel plane surfaces, theie being taken to be saticfactory approximations to the walle with
eylindrical surfaces actuclly encountered; gecond, the extent of melting of the high explosive,
supposed here to be TT, in the burster tube of the 4] -in. or similar rocket; and third, the tem=
perature distribtuion in cylindrical trap wires.

an outline of the results may be set forth briefly. &8 previously pointed out, they depend
on the value of 260°C found by Boyd for the maximum terperature reached inside the burster tubdbe of
the 4 =in, rocket. The corresponding heat-iransfer coefficient h 1s 0,183 cnl/onanc °C. vhich give

h = 0.0032 (pv)°*® ca1/ensec®c,

where P is the density of ths gas in grams per cubic centimeter and ¥y is its velocity in centimeters
per second, The rise in temperature on the inside of the wall of the tube 0,2 sec after the start
of burning is calculated to dbe 97 percent of the extreme rise. The temperature of the surface next
to the gases riges to 730°C near the end of the burster tube during the burning of a normal charge
of 7/8=in, stick pouder. If use is made of a charge of powder with l-in. web, weighing 6 1b, and
burnine 0,65 sec, the maxirua temperature on the inner side is m°c. If the inner surfacs of a
burster tube filled with T.T is at aso°c. a layer of TIIT less than 2 mm thick would be melted at
the end of a flight of 5 sec. Insulating the surface next to the gas with a layer i mm thick of some
substance similar to porcelain would reduce the maximum temperature reached inside the tudbe to about
180°C,

The surface of the trap wires of the 4f-in. rocket in the region where the flow of cas is great-
est reaches about 1zao°c. but the average tenperature over the same oross section of the wire is

only 1050°C., A method for determining the radiel distribution of terperature in the wire is given in
Part A

g See footnote page 1,
If an equation or its equivalent appears in the .ppendix of this report, it ic given the
nuber of the equation in the appendix, Other equations in the text are numbered ith Roran numerals.




II, HEAT TRANSFER TO THE WALLS OF THE BURSTZR TUBE

Ws start with Eq. (I) expressed in the form,
aQ/at = h('l'° - '1‘1), (11)

in which the heat-transfer coefficient h has been written for X(ov) 08, It 1 assuned that a

does not vary during the durning of the propellant, The differential equation of heat conduction
is put in the form used by Heaviside,

9% = ¢r, (111)

Here v s the laplace operator and qz is written for oD/i (whare o is the thermal capacity per

unit volume,k is the thermal conductivity, and D is the time-differentiating operator, d/t).
Heaviside showed 3 that under certain conditions the problem may be solved by integrating Eq. (III)
with g considered as constant, fitting the boundary conditions with the operational form of the
solution thus obtained and then converting the operational to an algedbraic form. UWe usually require
that the problem be reducidle to one dimension, and that the gquantity governing the condition of

the system, such as a temperature or rate of flow of heat, be zero up to the initial time. It should
be explained at this point that the zero of the scale of temperature is arbitrarily chosen as that
of the initial state of the system. In this report temperatures will be referred to zo°c.

The problem of transfer of heat to the burster tube in the 43-in. rocket is considered as one
of transfer to a wall of infinite extent bounded dy parallel plane surfaces. It is supposed that
conduction of heat through the inside surface of the wall is negligible in the intervals of time
of interest here, so that one boundary condition is that at the inside surface dT/9x = O, The
otker boundary condition expresses the equality of the heat transferred to the surface next to the
gas and the heat conducted amay from the surface; the corresponding equation is

h('l'° - T1) - -k(ai'/ax)1. (s)

The sudbscript 1 attached to the differential coefficient indicates that it refers to the surfuce
adjacent to the hot gas. The form of Eq. (III) appropirate for our one-dimensional system is
a®r/ax® = o%r, (1)

The solution in operational form s T = AT o Boqx. It is showa in the Appmdix that when the
boundary conditions are imposed this bdecomes

o ——dooshala=x)
T T eosh qa *kq sinh qa Tor (8)

and that T is given in algedraic form by the expression,
2
g,ﬁ- 0 w?. ‘ﬁ“ -x/a)]
T.To'roz + 1) +6°] cos® ° a?)

_§/ 0. Heaviside, Electromagnetic theory ("The Electrioian" Printing and Publishing Co., London
1899). In further references this work will be designated as "Kleoctromagnetic theory"
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in which@ takes the values of all the positive roots of the egquation, &
&coe © = @ sin 0. (16)

In Eqs. (8) and (17) x 1s taken as increasing from zero as it goee through the wall from the sur-
face next to the gas, & ie the thickness of the wall, & is defined as ah/k, and S ie defined as
nzc/h. We take the density of steel to bde 7.8 ’/“3. 1ts specific heat to de 0.11 cal/gr b
and its thermal conductivity to be 0.1l oal/em sec °C. The thickness of the well of the burster
tube is approximately 0.3 cm, In the Q-in. rocket loaded with a normal charge, 1.8 kg of powder
is in front of the end of the burster tude., Thie exhausts in 0.2 sec through a channel with a
median area of orose section ejual to 57 “2. giving an average density of flow of 160 n/cnzuo.
We £ind that ¢ probably liee in the interval from 0.35 to 0,55, and that A ie equal to 0.70ma. Wth
these values of the parametere, and with § mot too small, the eeries of Eq. (17) converges very
rapidly. For t equal to O.1 eec, two terms of the summation suffice for accuracy to 1 part in
100, For t less than O,1, one canm use the series of Eq. (57), Sec. 6 of the Appendix,

By integrating over the thickness of the wall, one can determine the average temperaturs at
a given time tl' for example, the burning time of the propellant. It is

go‘!ﬁ"‘
T.To'ToZO dei)sery’ ()

whers the values of @ are given again by Eq. (16). The derivations of this and following equations
are given in the Appendix., The value of T at the end of the burning time ie a good approximation
to the maximum temperature reached inside the bureter tube, as radiation and conduction could aot
be expected to change the heat content of the wall rapidly. By calculating T for a series of valuee
of &, using 3200°K for the temperature of the gas, it was found that the experimental figure, a
rise of about uo°c, is given with & equal to 0.5, This figure corresponds to a value of

0.,0032 CW-OA'“O.!,O.S °c

for the coefficiemt X in the expression for the heat-transfer coefficient ), which meane that the
gurface in question is not effectively smooth.

The distridution of temperature after the burning of the propellant wae determined by using
the usual Fourier snalysis. It wae assumed that no heat wae passing through either side of the wall,
If we write

;—-z: L oxp[iz—.g—.- (t - ti)] cos ..!.

Yy The practical solution of thie equation is treated in Sec, 5 of the Appendix,




[eee Eq. (21) in the Appendix] we get
to'?ﬂo (v)

- 0" t,/8 -
fa 'Z = - e‘; s ;l Y e

In the last three equations t1 represents the dburning time of the propellsnt. Figures 1 to 3
show the tempsrature as a function of position and time, as given by Egs, (17), (18), (V), and
(20), with & = 0.5, = 0.70 sse, t, = 0.20 sec, and T = 3200°K, It is significant that a
tempsrature high snough to start decomposition of TNT is reached a small fraction of a second
aftsr the charge starts to dbur.

It would be expscted that if the time is short in comparison with 3, the quantity of heat
transferred to a mll o finite thickmess would ds slightly less than ths value for a semi-infinits
801id, as the reflected wave would have littls effsct on the temperaturs of ths hot surfacs. The
valus for ths semi-infinits solid providss a oonvenient approximation and psrmits accurats evalua-
tion of the ocorrect figure for the wall of finits thicknsss by means of deviation curves, For the
semi-infinite solid we have ths boundary ocondition of Eq. (8) and the condition that T approaches
sero when X increasss without limit, Ths operational solution [see Eq. (30) in this Appendix] is

q-:ﬁh—t [

h ¢+ v6ED

Since r:. ths approximats valus of £, is Q/n'l‘o. we get from Eq. (32) ths algebraic form,

’0-4 = 0
(-] Ft F(Q;J.)

Figure 4 and Tadls I guopr:/at as a function ofavf/l. TFigure B gives the deviation curves,

&‘T (2 -2.),

as a function of d for a seriss of values of ¢/8. Figure 8 providss a means of sstimating t:
acourately, It is the deviation curvs showing ths diffsrencs bstween

0 R (g
i 1+ (3/s) dv‘!ﬁ°
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The use of Figs. 5 and 6 may be illustrated by calculating the ter@'erature reached inside the
burster tube of a standard 43-in. projectile when the propellant charge consists of a single grain
of powder, weighing 6 1b, burning in 0.65 sec, and giving s gas temperature of 2800°!!. It 1a
supposed thet the total length of the charge is 11 in., with z in. of this length extending behind
the bureter tubs., The redian port area ie found to be 46 em" and, since orly 9 in, of powder con-
tritute to the flow, the median density of flow 18 75 gm/om*sec and h is 0,101 cal/cm'sec °c.
The ocorresponding values of cland t/B are 0,275 and 0.93, end the other quantities thut deterrine
dand B are as previouely given, From Fig. 6 we find that fordv€/s equal to 0.264,

° - 1 - -
‘toldt T+ 13/4) (0.%68) 0.003 ~ 0.838,

Ia Pig, S we find thet when g is 0,275 and t/# ie 0,93,
At jdt =B r:/a - 0.011 = 0,881,

for which we get £ = 0,809, The rise in temperature is found from Iq. (V) to be 822°C, making
the meximm texperature on the inward side of the wall of the burster tudbe adbout uo°c.

An estimate of the error introduced by neglecting the cylindrical form of the bureter tubde
was made by comparing the heat transferred to unit surface of s semi-infinite solid with a plane
wall, with that transferred to unit surface of & s0lid cylinder of the same diumeter as the ocutside
of the tube, under the conditiuns previocusly given for the usunl charge, The method of making the
osleulation for the cylinder appears in the-Appendix. The orror turns out to be only 0.45 percent,
which is negligible in comparison with the errors associated with the assumption that the properties
of the ateel do not change with tesperuture,




I11, EFFECT OF EEATING ON TNT IN THE BURSTZR TUBE

In a test carried ocut at the request of Division 3, H, Henkin of Division 8 observed that
TNT in a sealed tube detonated after 25 sec at 360°C. Clearly it would not be safe to use an un-
insulated burster tube in the 43-in, projectile of the present design, unless the absorption of
heat by the melting of the TNT gives a substantial cooling of the wall, Neither the date on liquid
TNT nor the solution of the mathematical problem required for a determination of the cooling is
availeble, The magnitude of the effect may be estimated by =olving the problem on the assumptions
that the thermal conductivity and thermal capacity per unit volume are the same for liquid as for
80114 TNT, and that the inward side of the wall is a plane surface kept at a constont temperature,
In a solution attributed to Franz Nounnn.-v it is found that the melting surface recedes from the
heated surface in such a way that its distance Z is proportional to t1/2 and that the total
amount of heat transmitted from unit area of the wall in the time t is

v/6/2k
Q= 6K/ (Ts - K) /vé/_nL ap (-3x°) ax,

where the proportionality factor,

Y= zlt‘ . (v1I)

is given eas a root of the equation,

(2, = 19 (WvAT) axp (-7 o/ak) () @ (g's/an) VBpr
vh/2k

M %_ny exp (<4x")ax 1--»*27'12ﬂ .ﬁ"(-ex-)u Ve

In these equations 'l'z is the constant temperature of the wall, ¢ and j:. vefer to TNT, K is the melt-
ing point of the TNT, L is its heat of fusion, and P is its density, E, Iutchinson ) has given
the thermal conductivity of TNT at 30°C as 51.1 x 10™% watt/en2C, (or 1.22 x 10™> cal/em-sec C),
the density as 1,67 gn/cn®, and the Qiffusivity £/c as 1.94 x 10" en®/sec. The value 93,8 + 3.5
joule/gm or 22,3cal/gn, 1is given by the International Critical Tables for the heat of fusion at
80°C, the melting point. The proportionality factor?and the coefficient of t3 in Xq. (VI) were
calculated for two values of the terperature of the wall, 340° and 360°C, both with initiel tem-
peraturesof 20°C, The results and some related figures are given in Table II,

Teble II. Rate of melting of, end heat absorbed by, TNT.

— m———— r—
—_— —

Terperature of wall (°C) 340 360

7 (an/sec ¥) 0,067 0,070
Wt ' (cal/emtsec ¥) 10.9 1.9
3 for ¢ = 0.2 sec (cal/em®) 4.9 5.3
Z for t = 0.2 sec (em) 0,030 0,031
Z for t = 5 sec (em) 0.1%5 0.16

—

y;m.m—m. Partie fferential-Gleic vol, II, p. 117, Apparently the only
restriction on this solution is that the densities of solid and liquid be the same,

s/ "The thermal conductivity of explosive materials," Advisory Council on Scientific Research
and Technical Development Report A. C. 2861, Oct, 15, 1942,

- 77=




A decrease of 5 cal/cm® in the heat content of a wall of steel 0.3 cm thick would eorrespond
to a drop in temperature of sbout 19°C. Thus, cooling by the TNT could hardly keep the maxismm
temperature of the inward side of the wall below 340°C., On the other hand, the thickness of the
layer of TNT melted is so small for moderately short times of flight that it would not be expect-

ed to interfere with the detonation of the whole mass.




IV, EFFECT OF A LAYER OF INSULATION ON THE ABSORPTION OF HEAT BY THE BURSTIR TUBE

If a layer of insulating material- ie interpoeed betwean the gas and the wall of the dburster
tube, much less heat is transferred to the wall becauee the surface of the insulating material
reaches a mich higher temperature than would a eteel surface. The exact calculation of the transfer
of heat ,through an insulating layer ie unduly complicated, but an upper limit for the heat trans-
ferred may be calculated eseily by assuming that the surface of the insulator sdjacent to the wall
is kept at the initial temperature during the burning of the charge. Under this assumption we
find that g, the heat passing through unit area of the outer surface of the insulating layer in
the time &, is given by the expression,

( ]
Q_m{_s_,w L (s2)
del o'(«(ct+ 1) + 09

in which the values of @ are the positive roote of the equation
dsin 6 + 6 cos © = O, (29)

The calculation was carried out for an insulating layer 0.8 mm thick having the thermal
conductivity K and thermal capacity per unit volume ¢ of porcelein. We teke

k=4 x 10" cal/en sec °C, ¢ = 0.6 cal/en®, L 2900°C, t = 0.2 sec, and h = 0,183 cal/em®sec °C,
Then cl = 2,29 and # = 0,375 sec, and we find § = 46 cal/om? The thermal capacity per square centi-
meter of the wall with the insulating layer ie (0.3)(0.86) + (0,05)(0.6) = 0.29 cel/em® °G. Thus
the upper limit for the rise in temperature is 46/0.29 = 159°c, and hence the temperature will not
rise adbove 1ao°c. Since the material chosen as an example is not an expecially good insulator, and
TNT doee not decompoee rapidly below a4o°c, it is clear that the problem of providing adequate in-
sulation for the burster tube when the etandard charge is used may be reduced to that of getting

a thin layer of refractory material to adhere to the wall during the dburning of the charge. If

we make a similar calculation for the charge deecribed in Part II, weighing 6 1b and dburning for
0,65 sec, we £ind a 1limit of about 300°C for the maximum temperature; so we see that with such a
charge the prodlem of insulation is more critical.




V. HEATING OF TRAP WIRES

The trep wires in the Budd model of the 43-in. rocket ere 0,162 in, in diameter; that is,
the redius is 0.206 cm, so that it is certainly necessary to take account of the cylimdrical form
of the wires in calculating the distridbution of temperature in the wires, or even the average

temperature at the end of the burning time., The appropriste solution of the differential equation
of heat flow is

T =7, (1gr)A, (x)
in which A is a function of the time chosen to satisfy the boundary condition, J’o represents the
Bessel function of the first kind and szeroth order, and I is the radius in the oylindrical coordi-
nate system with axis in the axis of the wire. The Bessel funotion of the second kind is not in-
cluded decause we require the temperature to be finite at the axis., The operational solution
satisfying the boundary condition on the transfer of heat is
N’g(iqr)

b7 (1qry) ¢ ikql'; (1qr,)

Te= (38)

where y 1s written for the radius of the wire. The corresponding algedraic form is
-§° t/p
2de J
ren -1 (/)
© YT @) ()

’ (37)

with & ¥ r b/, k¥ r;e/l(, and the values of § are given by the positive roots of the equation,

a7 (9) = 93, (9). (38)

In computing the surface temperature for small values of t it is convenient to use an asymptotic
expansion of Bq. (35), in the form

T, =241 A/up {1 * 2AG =) (£/8)27 ¢ (2/3)(3/8 - d+ d®)(t/B)
* (378 = + (3/2)e® -a®)(t/p)*""
+ (4/18) (63/128 - (9/8)l + (15/8)d" - 2’ -t %] (8/3)" ¢ eoe ] . (X

The proper valus to use for the median density of flow past the trap wires has not been determined
with any certainty. It seems reascnadle to suppose that it would be somewhat larger than that

on the outside of the grains, since the ratio of median burning surface to median port srea is much
larger. However, some of the gas prodbadbly escapes to the outer side detween the grains, which

are arranged three on a wire. If we take 15 percent as the part of the gas from the second grain
that goes through the perforation of the grain farthest back, it cen be shown that we get about
190 ga/en® sec for the median density of flow. e then find h = 0,21 cel/em® seo °C, and o= 0.89.
Figure 7 shows the distridbution of terperature in a wire for the conditions o = 0.4, B = 0,33,

'1‘° = 2900°C (corresponding to about 3200°K). and t = 0.2 sec, The calculated surface terperature
is well delow the melting point of the steel, It has been observed, however, that after use in one
or two roundy the wires have a polished appearance, such as would de expected if there were super-

- 10 =
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ficial melting. It may well be that the value selected for tne density of flow is too small; it
is also possible that the neglected changes in the physical properties of the steel with tem-
perature would lead to a considerable error in defect in the calculated temperature,

Just as in the case of the wall with plane surfaces, it is convenient to represent the total
beat transferred from the gas in terms of the deviation from the value for the semi-infinite solid,
Figure 8 shows the deviations of Q/ht‘l‘o from Qolht‘l‘o, the value for the semi-infinite solid. The
last quantity is the same as thes rgldt used in connection with the plane wall and given in Figs. 4
and 6 and. Table I, Comparison of Figs. 5 and 8 makes apparent the short time required to produce
in oylinders significant departures from the conditions holding for the semi-infinite solid,
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APPENDIX

Derivation of Equations

1. Solution by Heavigide method

The differential equation for the rate of transfer of heat across unit area of interface be- °
tween the mediums is

d3T/cx® = g®1, Q1)

Q® = E '%. (2)

The complete solution of Eq. (1), considered as a total differential equation in T and x, is
T = ¢¥A ¢ o ¥, G)
A and B are functions of g and T,» chosen to fit the boundary conditions, which are that
O, =0
( /'38)- s )]

h(T, = T,) = = kOTAx) g * (5)

Equation (4) expresses the condition that no heat flows through the inward side of the wall (the
side away from the hot gas), and Eq. (5), in which T, is written for T(0), expresses the condi-
tion that the flow of heat through the outer side, that is, at the interface, is determined by
the difference in tempsrature across the boundary layer of gas. When we insert T from Eq. (3)
in Bqs. (4) and (5), we get

qe%®A - qe™ % = o (6)

h(‘!o = A =B) =<k(gh -~ gB). (7

With the values of A and B given by Eqs. (6) and (7), Eq. (3) veconsel/

TR c:'\.;:o:: oé: :1:!: qaro’ b
To simplify the notation and make the tine-differentiating operator appear explicitly, we put
o & ah/k, ®)
B Ealc/x, (10)
D & /¢, (1)

Ve is understood that all operands contain as a factor a function of ¢ that is sero for
¢t <0 and unity for t >0,




T = o2 cosh yB8 (1 - x/a) .
cioouh yAD + D sinh ﬂro (12)

Heaviside has ahomy that operational solutions of this sort may be expressed in algebraic form
ag a series, developed in the following way. If we have a solution,

ve !'%57 a(D), (1)

it may be expressed algebraically as

ve 8 5 amen, (5)

The sunmation is over the values of P, the roots of the equatiom F(P) = O. The smymbol F'(P) is
used to denote the derivative of #(D) with respect to D, evaluated at P. To 2p»ly this theoren
to Eq. (12), we take

F(D) ®ctzosh \£D + \BD sinh D » (13)
and

a(D) B4 T, cosh vBD (1 = x/a). (13*)

Then we reauire the roots in P of the equstion ¥(P) = 0. It may be thom® that 211 the
roots of the equation
cosh 2 ¢+ 8inhzg=0

are pure imaginary numbers, so that all the roots P are negative real nusbers, Thus it is
convenient to substitute 19 for D, and uszc the roots of the equivalent equation

H(®) Scos © - @ sin @ = 0, (16)
We now have
P (P) = 30.H'(0))
- ien (-dsin @ - siné - 9 cos e,
where the 6 are roots of Eq. (16) with the index n indicating the greatest multiple of ¥ not
exceeding @ . Then, by %, (16),
PP(P) = =5 [(@ + 1) + 03] cos @ .
Since P = -e:/ﬂ, the resulting expression for the temperature is
216~ con [0, (1 - x/a)]
TeT -T 2
© °%n% @ +1)+02cos 8

Y Electromametic theory, vol. 2, p. 127.
Y Churchill, liodern operational mathematics in engineering, p. 258.
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At the end of the durning time, say a% the 4ime Yy, the distrisution of temperaturs zay te re-
presented ty a Fourier series in the form

o0
(ty) = T L, ’E,..,:’- cos mx/a). (13)

This forz is chosen to make the distrizution symetrical atout x = 0 and x = &, to conferm with
the assumption that no heat flows through the surfaces at any time after t.l. The cod‘ﬁcimtsf._
my be evaluated in the usual way, giving the results

oreg

S Rlde) son’

<2t /8

L 4 — M'!-G;t1/13
n " e - el 1) o 02)

* (m >0),

Then the distribution cf temperature after burning is given by the expression,

rer, {to 3 ® ‘nq[- nl:: (t - t\)] . w‘} .

2, Heat transfer to insulating layer

In order to get an upper bound for the heat transferred to the wall covered with an insulating
layer, we assume that the interface between the insulator and the stesl is maintained at the
initial temperature. If we apply the sams syubols for the layer of insulation that we used for
the wall proper, we have the conlition that T = O when x = a, in addition to the condition of
Eq. (5). We use the solution in the fcrm of 2q. (3), and get Eq. (7) and the equation

0% + 0% e (22)

for the evaluation of A and i, The resulting operational solution for T, is

h sinh qa
Ty = X Th/KT 5Tk qa + q coeh qa L (@)

The heat transferred to unit area from the gas in the time ¢ is

t
Q" h(T, = T,)dt
of ° e

- wiy] q cosh ga
Q= hD (i/k) sinh qa + q cosh qa T

low we gubstitute from Eqs. (9, 10, and 11) and obtain

Q= ho! WD cosl: _\/HD T.
asinh VBD + VD cosh D ©
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The expansion theorem may be applied here to give
=1] 1 ] =- o#t/‘
Q-m'on [m‘ = (at+ 1) 00']
where the values of © are the positive roots of tha equation
asin ® +@ cos 6 = 0,
Integration of Eq. (26) gives the result

<%/
L 1=0 .
i {‘“‘ "’Ze-ramn) oe'l}

3. Transfer of heat to a semi-infinite solid

In this case the boundary canditions are (i) that the temperature approaches zero as x in-
creases without linit, and (11) the condition of Eq. (5). The operational form of the sclution
for the temperature of the surface is

h
kg To° (29)

This solution may be expanded in either ascending or descending powers of D, giving asymptotic
and convergent series, respectively, for '1'1 . The convergsant seriss is connnient for the
intervals of time of interest in this report. The quantity actually wanted is , or hD (‘1' 1‘ )18
which is found to be

'1'1'

We may expand the fraction in Eq. (30) by the binomial theorem and use the resulting cperaters
according to the generalized definition,

ﬂl‘ B I-..]:‘ -In“1 t.-n. (’1 )

applicable only for power series in t. The result is

- SO0 klen)”
Q h'rot.z T Ga s 2)

4. Distribution of temperature in cylinders

The general solution of the equation

£ 8-




By be written as
T=J, (iqr) A » Y, (1gr) B,

where J° and !° are the Bessel functions of the first and second kinds and seroth order. 8ince
we require the temperature to be finite when r = 0, we put B = O and so can immediately write
J_(1qr)
)

3 mlﬁ Py (33)
in which the subscripts 1 refer to the surface of the cylinder. The remaining boundary condi-
tiorn. is

nr_ -1) =k(L) . (3b)
o 1 (dr) rory
From Eqs. (33) and (34) we find that
. hJ _(1qr) .
motmij *Tq :o tmil o
This equation is exactly analogous to Eq. (8) for the plane wall,
Now put a-:-,b/i anuu-:e/k o Then

. aJ (V=2D r/r,) .
a3 (VZBD) + V=FD 31 (/FD)

In order to get into the denominator a function that has real roots, we maks the substitution
#§ = J=ED. The denominator of the general term in the solution expanded according to Heaviside's
expansion taeorem is

G6)

¥ 5T ) + 43 (A1 - Had ol (8 ) + 430(4) « AT (4))

") < k) + R[S - LA

12"!! 8%; td"o“n) * ‘n":»“nn “< %h."o(‘n) R ’n"o“nn
- @) 4).

Thus the algebraic form of T is

R [ 2«1:G V‘Jo(l r/r,)
-7 - —_—oar
) My ~p 2 3 (4)




with the ‘n given as the positive roots of the equation
al (f) = K, (.
1
The last equation depends on the relation J, (f) == o(ﬂ.
In the case of the cylinder we may take advantage of the possibility of expanding the Bessel
functions in asymptotic scries to get an asymptotic expansion for '1‘1, useful for calculating

eithar the surface temperature or the heat tranaferred at small values of the time., We tale the
solution in the form of Eq. (36) and use the asymptotic expansi L)

[« ] - s
[RCES ) C 9)
\/_’inZo ny (2x)°
Since Q = '1h(T° = T,), w got from Eq. (36)
- V=D J (v=AD)
Q= hD
ad_(vV=50) nF‘“a (v=BD) o'

On carrying out the division of the series for J° and Jo’ we got the expression

Q'hn-1 ] Tov 1)
1 +-2[1+2u + 6 +21m3+1261h¢uo]
vED

in which u is written for 200)"/2, We may now invert the series in the denominator to got

Q=h0' [1 - Lbaus (15 = Bo)u® = (i’ - 6la® + 2ha)ud
+ (256t 33Lg® + 2564~ 96a)u’
L (‘oﬂlas- 20!&30.“'0 19200.’— 11524.0 SOhd)us +* ...]'.l'°

=10 1 -aG0)™/2 +ae - DO cafa? - a + §) GOV
a(a® - 2d' +da é) 73 e d(d- -20’ -Zé- ga* %)@D) 5/, eeslT

This equation may be integrated to give an asymptotic series for § in the form

Voo ld-ar B\
el g

42)

W)

+ c00

Equations (32) and (L3) may be compared to bring out the effect of the cylindrical form on
the heatinz. The terms in Eq. (43) corresponding to Eq. (32) are those multiplied by the highest

o/ Elactromapnetic theory, vole 2, p. 240,
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powers of dl, We might rewrits Eq. (32) in the form

=ver [ 1 - ()Y By () - -1
to exhibit the correspondence between the two series,

S Soluticn of etcos © = © gin @

We give at the end of this section a table (A=I) of solutions of the equation acos @ = @ gin @,
Results for 01, 92 and 03 (good to within six, two, and one in the fourth decimal place res~
pectively for all values of a between O and 5) may be dbtained by linear interpclation 4n
Table A-I.

Far small values of g we can proceed as shom in the following illustrations
Example 1: Given @ = 0.1k £ind @
From the given table we find O <0°<0.h8. A fow rapid trials with & table of trigonometric

functions and a slide rule or other calculating device narrowed 9 dom to the interval betweesn
0,36 and 0,373 and in fact we compute:

0,36 tan (0,36) = 0,13550
0.32 tan (0.37) = 0,135

The usual interpolation procedure gives

65 = 0,36 + SO0~ 013588 x 0,01 = 0.365¢2.

We have used a table in which the trigonometric tangent is given to five decimal places and
the argumint in radians to two. Yet we have cbtained accuracy within 4 units in the fourth
decinal place for € as shown by comparisan with the carrect result 9 = 0.36565577 which was
got by using a mcre extensive tabls of tangents. The table actually uged 1s that given in the
"Handbook of Chemistry and Physics."”

Ionowcmsidoracsnwhoroth.(imvalmctghwwm5mdhmu lies outside
of the range of the table.

Bxample 21 Given A= 6,5; £ind 6,¢
We know that
% <o, <2w,
IfnwrihO.I-IOI,whnntololnthpoq\utim

(v + ) tan (v + §) = 6.5,
or, what comes to the same thing,
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(w+g) tan § = 6.5, 0O<gdenm,

We get soms assistance from the given table by noting that ol'h.033690 far @ = 5,0 and that
thodﬂ'tmlnol r«mmuo.z;mgummo.oz. Hence we might try as an
initia] value of ¢,

# = L.033690 + 6(0,02) = 3.141593 ¥ 1,01,

This turns ocut to be lz'oodcuul, and we computes
(3.141593 + 1.C0) tan (1.00) = 6,4501
(3141593 + 1,01) tan (1,01) = 6.6102.

¢ = 1,00 + §s5000.= SeliBEL x 0,01 = 1.00312LV/

01 e+ ‘ - 30113159 +1,00312 = ho‘“lnn

By inverpolation
so that

Finally, we show how to £ind the value otonitn>3.

Example J: OGiven @ = 3,0; find 8,
Since 7l<07<8 L

07-7IO-l-21.991151 + 4, O<¢d<n,
80 ihltd.,tlnﬁ.,'B.Ohoqﬁvﬂmtto
(§ + T0) tan ¢ = 3.0,

We lnow that the greater the valus of n, the closer does 9 1lie to n¥. Hence ¢ is rather

smll and we seek ite valus in that part of the table where the argument is small, By trial we
£ind

(21991151 + 0,13) tan (0.13) = 2,8921
(21.991151 + 0.14) tan (0.14) = 3.1167.

By interpolation,
g = 0,13 + 2000002 2,8921 , g.01 = 0137612/,
3.1187 - 2.,8921
hence

07 ® 21.99115 + 0,13476 = 22,12591,

1/ mig may be compared with the correct valus, g, = 1.00315011,
12/ e correct value of 4 1s 0.13476578.




-29 -

Some fairly acourate formulas for 6 as a function of o have been deviseds For instance,

(iSa + 105) - /(h5a+ 105)% = (h200¢* + 112004) W
1/ (hl)
hgoodtowithlnmudtinﬂntwﬂ:docinlpmofcrOsass.

Also

~ n%(2et+ 3) + /9uin® + 36a+ 1202 ; )
2a+ 6

is quite good for large n, Even for small n it is fair, except n = O, Forn = 1, it is good
to within one unit in the second decimal place for 0 @< 5. Forn = 2, it is good to within

two units in the third decimal place fu-050_<_5. For n = 3, it is good to within five units
in the fourth decimal place for 0 ga< 5,

We give the above formulas purely as mathematical curiosities, since experience has shom
that for the purpose of computing On for a specific n and @, the interpolation method ginn above
1s far handier than use of either (LL) or (LS5).

6. Solution by the laplace Transformation

We now cbtain a solution to the problem treated in Sec, 1 suitable for computation with
small values of the time t. '

It is required to cbtain solutions T(x,t) for the "heat equatiom *®

under the boundary conditions

T . = -
( °_)x-o aft - 260,0],
or) .
@) - >
and the initial condition
T(x,0) = 0, 9)
mﬂz 0.

I.tndnnotoﬂuuphcotrmdomd;wiﬂxrupocttogby'l.‘nﬂnnnmwmmuon

T, =T, (x0) = f‘:; % 2(x,t) dte (s0)
(-]

From (46), (k7) and (UB) respectively we get

azr
o " Ty




() -t o
(), -

The solution of (51) as an crdinary differential equation in T, and x is
TL-Acomx\/iOB sinh x V¢

where A and B are functions of s alone, to be determined from the conditions (52) and (53).
They are easily found to be

A= o and B~ - dm—ﬁ .
8(Va tanh 3 +a) 8 (Vs tanh V5 +a)

T (x,0) = ccosh [Va(1-x)] _ (54)
s(Va sinh Vs ¢+ acosh Vs)
Now in order to find T (x,t) we have to find the inverse of T (x,s) with respect to the

Laplace transformation. He
4100

st
T (x,t) = & __cosh (Vo (1 -~ x)] ds (55)
’ a1 -1 8(V8 sinh /3 ¢+ « cosh V) ?

where 7 is any real number such that all the pcles of the integrand have a real part less than 7,
The origin is clearly a pole and it can be sh d that all the other pcles 1lie on the
negative half of the real axis. Hence it is sufficient to take ¥ > O (Sketch 1).

A oplane
|

I
-
t
|

¥

[}
0

|

|

SKETCH 1

w/ Churchills “Lodern Operational iiathematics in Engineering,® p. 159 Thecrem 5.
Churchill: "Xodern Operaticnal Mathematics in Engineering," Chap, IX particularly p. 258.
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In order to evaluate the integral (55) we made a change of path and change of varisble, First
we deform the path shown in Sketch 1 into a parabola in the s-plane whose equation is

R 250

This path is shown in Sketch 2,

[

It will be noted that this deformation can be effected without crossing any of the poles of the
integrand, It may also be verified that because of the exponential factor in the integrand the
portion of the path joining the line to the parabola contributes nothing, in the limit, to the
value of the integral., Hence the value of the integral is not altered.

Now we change the variable of integration by means of the transformation
s=-y*

The path of Sketch 2 becomes, after reversing the sense of integration, a straight line in the
y-plane parallel to the real axis and at a distance vy above it (Sketch 3).

With this change of variable, the integral (55) becomes
~ty®
O f 1 b 6o
L

where we denote by L the path of integration shown in Sketch 3. Now we replace the trigorometric
functions appearing in the integrand by their values in terms of exponentials,
v _ % iy | -~y
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mdﬂunuplnduninugnndninpunrnotow.
Thus we get

nn)--,Z f‘(,—:'m( )'*""”"q:

-sn-o ..rG*Id -ﬁjm adahde 2

Upon making the change of variable u = ty® this becomes

n
Tlx,t) = -2L2 g.-(xozn)l-[..ua [VieesaoZ-rd]

[\ﬂu +4i(n ¢ ;)]&u +i(n 0% + tﬁ}]nﬂ

(s7)
-at:ng._sh,i_’!l f:_ul ed moz-x-tt)]

du
\/'buﬁ-(aloz-xﬂ[\ﬂu01(2noz-¢m)]“q *

We now prcceed to the evaluation of the integrals appearing in (57). As a matter of
’
convenience we note that these intégrals are essentially of the farm
0 oy n
1 e (w ¢ i0)

8 i (weta)wetn)®*

p) (58)

where n is a non-negative integer. We shall make special use of the cagean = O and n = 1.

7. EBvaluation of I
M

let us defins the function

P(a)= o [."' &= [!25- of a].

F () =2ar@)-1.
From a well=imom definite integral,

1 -% 6/-0"". ays

00
-x% _ 2x 2201 + 7"
\/F-[

Integration of both sides with respect to x from & to o gives




Sttuxy-- w got

Using the integral expression for F given in (61) we can write

® ']
-..:. -h .‘ ’ﬂ:‘
2 ™ % F(x) - f TF &

o
Tntegrating with resvent to x from 8 to @ gives

2,2 ® =(s*  y*)a?

2t p a--!- 6
(x) /' m 01')(:'07') (63)

We note the following relation, which can be easily verified by differentiating both aides with
respect to a:

f 2 "3 p(x)ax = —-[rm -1 m.)]

lqg:;.in; the right-hand side of this identity with that of (63) and miltiplying both sides by
o w get

[
._l_.[ ) -1 p(..)] adh / ST

e e T

s® =1

v

Upon making the substitutions

e
1 [br(.) - .[(b)] -2 [ S d-' »
b = at v (w® ¢ a®)(w® ¢ 0b3)

(]




- o
M.l [ STt erae
- /(-' + at)(w® ¢ d%)
-}

@®
-J— / QL ——-3*—
(v 0!')(" + %) \ﬁ (W +a®)(w® o 18)

ntemmtmm-mntwunovn-unmby(&),-m

Vi (v« l')(" +2%) O°. l')[ e &

o -
1— %-o,
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since the integrand is an odd funstion of the varisbls of integration.

By use of this and (64) and (65),
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Differentiation of both sides of (66) with respect to b gives
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Since S— I, can be camputed by differentiating both sides of (66) m times, we have & means of
cme&]:n In particular, if w set 7 = 1 we got

Ie1, ¢ (b.o)a_bﬁ -& [r(b).r(.)] + 2(b-c) [_E). M]

= a)®

r—[l’(b) - r(n)] +20b - c)[ E’E-@)-— —-L'-ﬂ-')-] (68)

- .).

When 3 differs but littls from b, one can get useful approximate formulas for I, and 1. By
lor's Series,

o) =W s b - r () + LAy ) 4.
Henoe by (66)
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P(a) = 2aF(a) -1,
7°(a) = (ba® +3) P(a) = 2a

::1’-‘-‘2 [kr(a) + 2] ,

k-Zb-cOlozl'(zb-o-a))

Lea(d~-0c=-2)=1.

A table (A-II) of F(x) for X between O and 6 ig provided. For x 2 1, linear interpolation is
govd to four decimal places, and far 0 < x $ 1, linear interpolation is good to three decimal
places.




Table A-l,

1.264592
1.278569
1.291341
1.303056
1.21877

2,808765
2.84254
3.876050
3.906545

*3.935157

2.9620%
3.987314
4.011116
4033570

6.732901
6.760880

6,787910
6.814014
6.839204
6.863515
6.886970
6.909595

9.790563
9.811878
9.822755
9.853193
9.872192
9.892753

. 2
Table A-I1." Table of F(x) = ¢* j

2
7 ay

Lx)

Ex)

tx)

«8384
o745
«7541
<7170

6827

6510
6217
5945
5692
+5456
5237
05032
+4BLO
4661
o£493
4335

4186

4046
9L,
<2789
« %72
+3560
03455
03355

1.25
1.20
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2,00
2,05
2,10
2,15
2.20
2.25
2,20
2,35
2,40
2.45

2.50
2,55
2,60
2,65
2,70
2,75
2,8C
2.85
2,90
2,95
2,00
2,05
2,10
2,15
2,20
2,25
3,30
3.25
2,40
2.45
3.50
2,55
3

3.65
2,70

0.1868
«18%
«1804
o177
1745
«1726
1689
01662
01626
»1611
.1”6
01563
<1540
01517
o 1495
1474
«1433
01423

1414

1295
1776
1258
01341
01223
«1307

6.C

0.1290
01274

1244
1214
«1186
«1159
1124
«1109
«1085
+1063
«1041
<1020
«1000
«0981
0963
+0945
«0927
<0911
0895
«0879
«C864
«0850
«C826
<0822

’ml table is abridged from Table 2, Column 2, given in ABL Final Report B-2.1
(CS™D 52€1), "Part Iy Mathedg of Computation,® vo 208, 209, and 210,
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